Department für Agrarbiotechnologie, IFA-Tulln: Unterschied zwischen den Versionen

K
ty
K (Abkürzung korrigiert, Leerzeichen nach Komma, Leerzeichen in Überschrift, Kleinkram)
K (ty)
Zeile 48: Zeile 48:
=== Institut für Naturstofftechnik ===
=== Institut für Naturstofftechnik ===


Einer der Forschungsschwerpunkte des Instituts für Naturstofftechnik ist die Nutzbarmachung nachgewachsener Rohstoffe als neue Werkstoffe. Das Hauptaugenmerk liegt dabei auf den faser-, stärke- und proteinreichen Rohstoffen. Das Institut beschäftigt sich schon seit Jahren mit der Verwendung dieser Rohstoffe in der Extrusions- und Spritzgusstechnik. Neben Holz sind aber in den letzen Jahren Produkte und Begleitstoffe der Landwirtschaft sowie der Papier- und Kunststoffindustrie immer mehr in den Fokus gerückt. Beispielhaft sind Getreidenebenprodukte wie Kleie, Spelzen etc. zu ennnen, Randbeschnitte der Papiermaschinen, Verbundkartone und-papiere, geschredderte Big Bags, Folien, Kabelschrott und sogar Filteraschen aus Verbrennungsanlagen.
Einer der Forschungsschwerpunkte des Instituts für Naturstofftechnik ist die Nutzbarmachung nachgewachsener Rohstoffe als neue Werkstoffe. Das Hauptaugenmerk liegt dabei auf den faser-, stärke- und proteinreichen Rohstoffen. Das Institut beschäftigt sich schon seit Jahren mit der Verwendung dieser Rohstoffe in der Extrusions- und Spritzgusstechnik. Neben Holz sind aber in den letzten Jahren Produkte und Begleitstoffe der Landwirtschaft sowie der Papier- und Kunststoffindustrie immer mehr in den Fokus gerückt. Beispielhaft sind Getreidenebenprodukte wie Kleie, Spelzen etc. zu nennen, Randbeschnitte der Papiermaschinen, Verbundkartone und -papiere, geschredderte Big Bags, Folien, Kabelschrott und sogar Filteraschen aus Verbrennungsanlagen.


Ziel unserer Forschung für diese zukunftsträchtigen Entwicklungen ist immer das Recyceln bzw. Upcyceln zu einem höherwertigen Produkt. Voraussetzung für diese Entwicklungen ist neben einem hochmodernen Technikum mit der entsprechenden Aufbereitungstechnik auch eine geeignete Mess- und Prüftechnik.
Ziel unserer Forschung für diese zukunftsträchtigen Entwicklungen ist immer das Recyceln bzw. Upcyceln zu einem höherwertigen Produkt. Voraussetzung für diese Entwicklungen ist neben einem hochmodernen Technikum mit der entsprechenden Aufbereitungstechnik auch eine geeignete Mess- und Prüftechnik.
Zeile 56: Zeile 56:


=== Institut für Umweltbiotechnologie ===
=== Institut für Umweltbiotechnologie ===
Der Schwerpunkt der Forschungsaktivitäten am '''Institut für Umweltbiotechnologie''' liegt auf der Nutzung mikrobiologischer Stoffwechselvorgänge zur Sicherung der Lebensqualität und zur Wahrung natürlicher Ressourcen. Auf der einen Seite stehen der Abbau und die Entgiftung von Schadstoffen (in Boden, Wasser und Abfall) sowie die Entwicklung von Monitoring-Methoden zur Bewertung des Risikos, das von kontaminierten Medien ausgeht. Auf der anderen Seite stellt die bestmögliche Nutzung vorhandener Ressourcen durch Schaffung nachhaltiger Stoffkreisläufe ein zentrales Ziel der am Institut betriebenen Forschung dar. Neben der Untersuchung mikrobieller Prozesse, wird das Potential von Enzymem als leistungsfähige Biokatalysatoren zur Verarbeitung von (Bio)materialien, in Recycling-Prozessen sowie bei der Erzeugung von Bioenergy erforscht.
Der Schwerpunkt der Forschungsaktivitäten am '''Institut für Umweltbiotechnologie''' liegt auf der Nutzung mikrobiologischer Stoffwechselvorgänge zur Sicherung der Lebensqualität und zur Wahrung natürlicher Ressourcen. Auf der einen Seite stehen der Abbau und die Entgiftung von Schadstoffen (in Boden, Wasser und Abfall) sowie die Entwicklung von Monitoring-Methoden zur Bewertung des Risikos, das von kontaminierten Medien ausgeht. Auf der anderen Seite stellt die bestmögliche Nutzung vorhandener Ressourcen durch Schaffung nachhaltiger Stoffkreisläufe ein zentrales Ziel der am Institut betriebenen Forschung dar. Neben der Untersuchung mikrobieller Prozesse, wird das Potential von Enzymen als leistungsfähige Biokatalysatoren zur Verarbeitung von (Bio)materialien, in Recycling-Prozessen sowie bei der Erzeugung von Bioenergie erforscht.


Zusätzlich zur Erforschung grundlegender mikrobieller Prozesse nehmen die praktische Anwendung und die Prozessentwicklung für die technische Realisierung eine herausragende Rolle ein. Als Beispiele dafür können die Übertragung vom Labormaßstab auf den großtechnischen Maßstab bei Fermentationsprozessen, die Entwicklung von Sanierungsmethoden für den Feldeinsatz und die Erprobung innovativer biologisch-physikalischer Kombinationsprozesse (z. B. der Einsatz von Membranen in der Bioprozesstechnik) in der Umwelttechnik genannt werden.
Zusätzlich zur Erforschung grundlegender mikrobieller Prozesse nehmen die praktische Anwendung und die Prozessentwicklung für die technische Realisierung eine herausragende Rolle ein. Als Beispiele dafür können die Übertragung vom Labormaßstab auf den großtechnischen Maßstab bei Fermentationsprozessen, die Entwicklung von Sanierungsmethoden für den Feldeinsatz und die Erprobung innovativer biologisch-physikalischer Kombinationsprozesse (z. B. der Einsatz von Membranen in der Bioprozesstechnik) in der Umwelttechnik genannt werden.


Das Institut verfügt über bestens ausgestatte Labors mit modernsten Analysengeräten und entsprechender Infrastruktur sowie Brut- und Kühlräume, einen Steril-Bereich, Werkstätten, Versuchsanlagen und eine Pilotanlage für Fermentationen. Diese Voraussetzungen ermöglichen es Forschungs- und Projektverantwortlichen, erfolgreich Forschungskooperationen mit Industriepartnern einzugehen.
Das Institut verfügt über bestens ausgestattete Labors mit modernsten Analysengeräten und entsprechender Infrastruktur sowie Brut- und Kühlräume, einen Steril-Bereich, Werkstätten, Versuchsanlagen und eine Pilotanlage für Fermentationen. Diese Voraussetzungen ermöglichen es Forschungs- und Projektverantwortlichen, erfolgreich Forschungskooperationen mit Industriepartnern einzugehen.


==== Arbeitsgruppe Biomaterial- & Enzymtechnologie ====
==== Arbeitsgruppe Biomaterial- & Enzymtechnologie ====
Enzyme sind hochspezifische biologische Katalysatoren welche die Geschwindigkeit nahezu aller chemischen Reaktionen in lebenden Organismen erhöhen. Wir untersuchen deren Rolle in biologischen Abbauprozessen und nutzen dieses Wissen um Enzym-basierte nachhaltige Prozesse für verschiedene Bereiche von der Verarbeitung von Biomaterialen bis hin zum Umweltschutz zu entwickeln.
Enzyme sind hochspezifische biologische Katalysatoren welche die Geschwindigkeit nahezu aller chemischen Reaktionen in lebenden Organismen erhöhen. Wir untersuchen deren Rolle in biologischen Abbauprozessen und nutzen dieses Wissen um Enzym-basierte nachhaltige Prozesse für verschiedene Bereiche von der Verarbeitung von Biomaterialien bis hin zum Umweltschutz zu entwickeln.


Folglich ist die mechanistische Untersuchung von enzymatischen Prozessen in der Umwelt ein wichtiger Forschungsschwerpunkt der Biomaterial- und Enzymtechnologie-Gruppe. Neue Erkenntnisse, wie über die Biotransformation von Xenobiotika führt oft zu neuen Enzymen mit Einsatzmöglichkeiten in der Umwelttechnologie oder in anderen nachhaltigen industriellen Prozessen. Insbesondere Enzyme die in der Natur die Umsetzung polymerer Materialien katalysieren haben ein großes Potential für neue industrielle Anwendungen. Zum Beispiel ist die Verarbeitung und Aufwertung von synthetischen und von Biomaterialien mit Hydrolasen und Oxidoreduktasen ein wichtiger Schwerpunkt der Arbeitsgruppe. Abgesehen von der enzymatischen Funktionalisierung (z. B. antimikrobiell, biokompatibel) dieser Materialien können Enzyme auch zur der Wiederverwertung von Polymeren eingesetzt werden. Aufgrund ihrer hohen Spezifität, können wertvolle Bausteine sogar aus Verbundmaterialien und Mischungen "extrahiert" werden. Auf der anderen Seite ist der effiziente Abbau von Biomasse (z. B. Lignocellulose) unter umweltfreundlichen Bedingungen eine essentielle Voraussetzung für die Produktion von Bioenergie wo auch Enzyme eine wichtige Rolle spielen. Trotz dieses enormen Potentials von Mikroorganismen für industrielle Prozesse sind sie manchmal auch unerwünscht wie als Krankheitserreger oder Kontamination von Lebensmitteln. Um diese Organismen frühzeitig z. B. in Wunden zu erkennen entwickelt die Gruppe einfach handzuhabende aber leistungsfähige Sensoren.
Folglich ist die mechanistische Untersuchung von enzymatischen Prozessen in der Umwelt ein wichtiger Forschungsschwerpunkt der Biomaterial- und Enzymtechnologie-Gruppe. Neue Erkenntnisse, wie über die Biotransformation von Xenobiotika führt oft zu neuen Enzymen mit Einsatzmöglichkeiten in der Umwelttechnologie oder in anderen nachhaltigen industriellen Prozessen. Insbesondere Enzyme die in der Natur die Umsetzung polymerer Materialien katalysieren haben ein großes Potential für neue industrielle Anwendungen. Zum Beispiel ist die Verarbeitung und Aufwertung von synthetischen und von Biomaterialien mit Hydrolasen und Oxidoreduktasen ein wichtiger Schwerpunkt der Arbeitsgruppe. Abgesehen von der enzymatischen Funktionalisierung (z. B. antimikrobiell, biokompatibel) dieser Materialien können Enzyme auch zur der Wiederverwertung von Polymeren eingesetzt werden. Aufgrund ihrer hohen Spezifität, können wertvolle Bausteine sogar aus Verbundmaterialien und Mischungen "extrahiert" werden. Auf der anderen Seite ist der effiziente Abbau von Biomasse (z. B. Lignocellulose) unter umweltfreundlichen Bedingungen eine essentielle Voraussetzung für die Produktion von Bioenergie wo auch Enzyme eine wichtige Rolle spielen. Trotz dieses enormen Potentials von Mikroorganismen für industrielle Prozesse sind sie manchmal auch unerwünscht wie als Krankheitserreger oder Kontamination von Lebensmitteln. Um diese Organismen frühzeitig z. B. in Wunden zu erkennen entwickelt die Gruppe einfach handzuhabende aber leistungsfähige Sensoren.
Zeile 114: Zeile 114:


Experimentelle Studien an landwirtschaftlichen Nutztieren und Modelltieren für den Menschen (Schwein, Ratte) zum Stoffwechsel von Nährstoffen und der Wirkung von funktionellen Inhaltsstoffen der Nahrung bzw. von Zusatzstoffen.
Experimentelle Studien an landwirtschaftlichen Nutztieren und Modelltieren für den Menschen (Schwein, Ratte) zum Stoffwechsel von Nährstoffen und der Wirkung von funktionellen Inhaltsstoffen der Nahrung bzw. von Zusatzstoffen.
Analyse von Nährstoffen (inkl. Spurenelementen) in biologischem Material.
Analyse von Nährstoffen (inkl. Spurenelementen) in biologischem Material. Quantifizierung fraktioneller Stoffflüsse im intakten Organismus (Absorption, Exkretion, Turnover im Gewebe).
Quantifizierung fraktioneller Stoffflüsse im intakten Organismus (Absorption, Exkretion, Turnover im Gewebe).


Thematische Schwerpunkte
Thematische Schwerpunkte


Wirkung von pflanzlichen Faserkomponenten, Probiotika und ätherischen Gewürzölen auf die Funktionalität der Verdauung am Tiermodell des Schweins mittels ernährungsphysiologischer, molekularbiologischer und histologischer Methoden.
Wirkung von pflanzlichen Faserkomponenten, Probiotika und ätherischen Gewürzölen auf die Funktionalität der Verdauung am Tiermodell des Schweins mittels ernährungsphysiologischer, molekularbiologischer und histologischer Methoden.
Ernährungsphysiologische Aspekte (Bioverfügbarkeit, Akkumulation im Gewebe) essentieller Spurenelemente (Jod, Selen, Zink).
Ernährungsphysiologische Aspekte (Bioverfügbarkeit, Akkumulation im Gewebe) essentieller Spurenelemente (Jod, Selen, Zink). Optimierung der Nährstoffversorgung landwirtschaftlicher Nutztiere (essentielle Aminosäuren, essentielle Spurenelemente, Fettqualität).
Optimierung der Nährstoffversorgung landwirtschaftlicher Nutztiere (essentielle Aminosäuren, essentielle Spurenelemente, Fettqualität).


== Lehre am Department für Agrarbiotechnologie, IFA-Tulln ==
== Lehre am Department für Agrarbiotechnologie, IFA-Tulln ==
Anonymer Benutzer