Department für Agrarbiotechnologie, IFA-Tulln: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
K
Department für Agrarbiotechnologie, IFA-Tulln (Quelltext anzeigen)
Version vom 25. November 2016, 18:39 Uhr
, 25. November 2016Bot: geschütztes Leerzeichen eingefügt
K (fixed typo) |
K (Bot: geschütztes Leerzeichen eingefügt) |
||
Zeile 16: | Zeile 16: | ||
| Website = [http://www.ifa-tulln.ac.at www.ifa-tulln.ac.at]<br /> [http://www.ifa-tulln.boku.ac.at www.ifa-tulln.boku.ac.at] | | Website = [http://www.ifa-tulln.ac.at www.ifa-tulln.ac.at]<br /> [http://www.ifa-tulln.boku.ac.at www.ifa-tulln.boku.ac.at] | ||
}} | }} | ||
Das '''Interuniversitäre Department für Agrarbiotechnologie''' ('''IFA Tulln''') ist ein gemeinsames Projekt der [[Universität für Bodenkultur Wien]] (BOKU), der [[Technische Universität Wien|Technischen Universität Wien]] (TU) und der [[ | Das '''Interuniversitäre Department für Agrarbiotechnologie''' ('''IFA Tulln''') ist ein gemeinsames Projekt der [[Universität für Bodenkultur Wien]] (BOKU), der [[Technische Universität Wien|Technischen Universität Wien]] (TU) und der [[Veterinärmedizinische Universität Wien]] (VetMed), und eines der 15 [[Fakultät (Hochschule)|Departments]] der BOKU. Fünf der sechs [[Universitätsinstitut|Institute]] der IFA bilden den ''BOKU Standort Tulln'', und mit einigen angeschlossenen Instituten den ''Campus [[Tulln Technopol]]''. | ||
== Geschichte == | == Geschichte == | ||
Zeile 51: | Zeile 51: | ||
=== Analytikzentrum === | === Analytikzentrum === | ||
Es gliedert sich in die drei Arbeitsbereiche Mykotoxinanalytik, Wasseranalytik und Biochemische Analytik. Neben der Entwicklung und Validierung von Analysenmethoden v.a. im Bereich der Umwelt- und Toxinanalytik sowie zur Sicherung der Qualität von Lebens- und Futtermitteln ist auch die Herstellung von Referenzmaterialien ein Themenschwerpunkt. | Es gliedert sich in die drei Arbeitsbereiche Mykotoxinanalytik, Wasseranalytik und Biochemische Analytik. Neben der Entwicklung und Validierung von Analysenmethoden v. a. im Bereich der Umwelt- und Toxinanalytik sowie zur Sicherung der Qualität von Lebens- und Futtermitteln ist auch die Herstellung von Referenzmaterialien ein Themenschwerpunkt. | ||
=== Institut für Umweltbiotechnologie === | === Institut für Umweltbiotechnologie === | ||
Zeile 64: | Zeile 64: | ||
Dieser Fachbereich umfasst Grundlagen- und angewandte Forschung zum Auftreten und Verhalten von organischen Chemikalien in der Umwelt, die Bewertung der daraus resultierenden Gefährdung sowie Möglichkeiten zur Eindämmung des Risikos bzw. zur Sanierung von Schadensfällen. Dazu werden innovative Analysemethoden sowohl physikalisch-chemischer als auch biologischer Art entwickelt. | Dieser Fachbereich umfasst Grundlagen- und angewandte Forschung zum Auftreten und Verhalten von organischen Chemikalien in der Umwelt, die Bewertung der daraus resultierenden Gefährdung sowie Möglichkeiten zur Eindämmung des Risikos bzw. zur Sanierung von Schadensfällen. Dazu werden innovative Analysemethoden sowohl physikalisch-chemischer als auch biologischer Art entwickelt. | ||
In weiterer Folge werden im Labor potentielle Limitierungen des mikrobiellen Schadstoffabbaus untersucht und anhand der Ergebnisse Produkte und Methoden erarbeitet, die eine großtechnische Anwendung und einen effizienten Betrieb von Sanierungsverfahren ermöglichen. Die Forschungsarbeiten konzentrieren sich auf die Untersuchung von Wechselwirkungen zwischen Bodenmatrix und organischen Schadstoffen. Weiters werden in-situ und on-site Sanierungstechniken entwickelt. | In weiterer Folge werden im Labor potentielle Limitierungen des mikrobiellen Schadstoffabbaus untersucht und anhand der Ergebnisse Produkte und Methoden erarbeitet, die eine großtechnische Anwendung und einen effizienten Betrieb von Sanierungsverfahren ermöglichen. Die Forschungsarbeiten konzentrieren sich auf die Untersuchung von Wechselwirkungen zwischen Bodenmatrix und organischen Schadstoffen. Weiters werden in-situ und on-site Sanierungstechniken entwickelt. | ||
==== Arbeitsgruppe Anaerobe Verwertung (Biogas Forschungs- und Beratungsgruppe) ==== | ==== Arbeitsgruppe Anaerobe Verwertung (Biogas Forschungs- und Beratungsgruppe) ==== | ||
Zeile 80: | Zeile 80: | ||
Mikrobielle Additive und | Mikrobielle Additive und | ||
Produktformulierung | Produktformulierung | ||
Die Entwicklung von Prozessen umfasst Isolierung, Screening, Identifizierung und Kultivierung von Mikroorganismen und geht bis zur Produktion im Pilotmaßstab und der anwendungsgerechten Formulierung. Anwendungsbereiche sind z.B. Mikroorganismen für die Futtermittelindustrie, wo bereits Produkte bis zur Marktreife entwickelt werden konnten. | Die Entwicklung von Prozessen umfasst Isolierung, Screening, Identifizierung und Kultivierung von Mikroorganismen und geht bis zur Produktion im Pilotmaßstab und der anwendungsgerechten Formulierung. Anwendungsbereiche sind z. B. Mikroorganismen für die Futtermittelindustrie, wo bereits Produkte bis zur Marktreife entwickelt werden konnten. | ||
==== Arbeitsgruppe Futtermittelzusätze ==== | ==== Arbeitsgruppe Futtermittelzusätze ==== | ||
Die Forschungstätigkeiten der Arbeitsgruppe „Futtermittelzusätze“ erfolgen in enger Kooperation mit der Firma Biomin GmbH. Die hier durchgeführten Projekte sind thematisch dem Bereich der Tierernährung zuzuordnen. In diesem Zusammenhang liegt ein Schwerpunkt in der Forschung, Entwicklung und der praktischen Anwendung von probiotischen Futtermitteladditiven in der Tierproduktion. Durch den Einsatz von natürlich im Darm der Tiere vorkommenden Bakterienstämmen soll der Gesundheitsstatus von Masttieren auf natürliche Art stabilisiert und vor Krankheitserregern wie z.B. Salmonellen geschützt werden. Gleichzeitig soll – insbesondere nach dem mit 1. Jänner 2006 in Kraft getretenen Verbot von antibiotischen Leistungsförderern in der Europäischen Union - dem Missbrauch von Antibiotika in der Fleischproduktion durch ein Anstieg an therapeutischen Antibiotika entgegengewirkt werden. | Die Forschungstätigkeiten der Arbeitsgruppe „Futtermittelzusätze“ erfolgen in enger Kooperation mit der Firma Biomin GmbH. Die hier durchgeführten Projekte sind thematisch dem Bereich der Tierernährung zuzuordnen. In diesem Zusammenhang liegt ein Schwerpunkt in der Forschung, Entwicklung und der praktischen Anwendung von probiotischen Futtermitteladditiven in der Tierproduktion. Durch den Einsatz von natürlich im Darm der Tiere vorkommenden Bakterienstämmen soll der Gesundheitsstatus von Masttieren auf natürliche Art stabilisiert und vor Krankheitserregern wie z. B. Salmonellen geschützt werden. Gleichzeitig soll – insbesondere nach dem mit 1. Jänner 2006 in Kraft getretenen Verbot von antibiotischen Leistungsförderern in der Europäischen Union - dem Missbrauch von Antibiotika in der Fleischproduktion durch ein Anstieg an therapeutischen Antibiotika entgegengewirkt werden. | ||
Besonderes Augenmerk wird auf Mehrkomponentenadditive gelegt, die aufgrund ihrer komplexen, aber genau definierten mikrobiologischen Zusammensetzung zusätzliche positive Effekte hinsichtlich ihrer Wirksamkeit erzielen können. Die Forschung wird durch mikro- und molekularbiologischen Methoden unterstützt, um einerseits die Mikroorganismen aus dem Verdauungstrakt der Tiere zu charakterisieren und hinsichtlich ihrer Wirksamkeit und Sicherheit zu studieren, und um andererseits die mit der Verabreichung von Futtermittelzusätzen erzielbaren Veränderungen in der Darmflora aufzeigen zu können. | Besonderes Augenmerk wird auf Mehrkomponentenadditive gelegt, die aufgrund ihrer komplexen, aber genau definierten mikrobiologischen Zusammensetzung zusätzliche positive Effekte hinsichtlich ihrer Wirksamkeit erzielen können. Die Forschung wird durch mikro- und molekularbiologischen Methoden unterstützt, um einerseits die Mikroorganismen aus dem Verdauungstrakt der Tiere zu charakterisieren und hinsichtlich ihrer Wirksamkeit und Sicherheit zu studieren, und um andererseits die mit der Verabreichung von Futtermittelzusätzen erzielbaren Veränderungen in der Darmflora aufzeigen zu können. | ||
Zeile 99: | Zeile 99: | ||
Die Gruppe Wasser- und Abwasseraufbereitung beschäftigt sich mit der Entwicklung von neuartigen und optimierten Verfahrensweisen und Prozessen im Bereich Wasser- und Abwasseraufbereitung. | Die Gruppe Wasser- und Abwasseraufbereitung beschäftigt sich mit der Entwicklung von neuartigen und optimierten Verfahrensweisen und Prozessen im Bereich Wasser- und Abwasseraufbereitung. | ||
Die Arbeitsgruppe steht unter der Leitung von Werner Fuchs. Bei den in der Arbeitsgruppe durchgeführten Projekten handelt es sich fast durchwegs um Industriekooperationen, zumeist mit Unterstützung durch nationale und europäische Fördermittel. Kennzeichnend für die Aktivitäten ist auch die internationale Ausrichtung. Projekte wurden nicht nur mit Partnern im EU-Raum, sondern unter anderem auch mit China, Lateinamerika und Nordafrika durchgeführt. | Die Arbeitsgruppe steht unter der Leitung von Werner Fuchs. Bei den in der Arbeitsgruppe durchgeführten Projekten handelt es sich fast durchwegs um Industriekooperationen, zumeist mit Unterstützung durch nationale und europäische Fördermittel. Kennzeichnend für die Aktivitäten ist auch die internationale Ausrichtung. Projekte wurden nicht nur mit Partnern im EU-Raum, sondern unter anderem auch mit China, Lateinamerika und Nordafrika durchgeführt. | ||
Neben der Verfahrensentwicklung in Zusammenarbeit mit Anlagenbauunternehmen wird auch Hilfestellung bei der Lösung von Problemen im Wasserversorgungs- und Abwasserbehandlungsbereich gegeben. | Neben der Verfahrensentwicklung in Zusammenarbeit mit Anlagenbauunternehmen wird auch Hilfestellung bei der Lösung von Problemen im Wasserversorgungs- und Abwasserbehandlungsbereich gegeben. | ||
Zeile 110: | Zeile 110: | ||
Der Einsatz von Reproduktionstechnologien in der Rinderzucht ermöglicht durch die Produktion von Embryonen die effektive Nutzung genetisch hochwertiger Tiere. Die Produktion von Embryonen gelingt vom lebenden Tier mittels hormoneller Superovulation, Besamung und Spülung der Embryonen aus der Gebärmutter (Embryotransfer). | Der Einsatz von Reproduktionstechnologien in der Rinderzucht ermöglicht durch die Produktion von Embryonen die effektive Nutzung genetisch hochwertiger Tiere. Die Produktion von Embryonen gelingt vom lebenden Tier mittels hormoneller Superovulation, Besamung und Spülung der Embryonen aus der Gebärmutter (Embryotransfer). | ||
dann im Labor befruchtet werden und sich zu Embryonen entwickeln (IVP = in vitro Produktion von Embryonen). Mittels der IVP können auch von geschlachteten Tieren, deren Eierstöcke binnen kurzer Zeit im Labor eintreffen, Embryonen produziert werden. Die so erhaltenen Embryonen können direkt auf Empfängertiere übertragen werden oder zu Lagerungs-, Transport- bzw. Verkaufszwecken tiefgefroren werden. | dann im Labor befruchtet werden und sich zu Embryonen entwickeln (IVP = in vitro Produktion von Embryonen). Mittels der IVP können auch von geschlachteten Tieren, deren Eierstöcke binnen kurzer Zeit im Labor eintreffen, Embryonen produziert werden. Die so erhaltenen Embryonen können direkt auf Empfängertiere übertragen werden oder zu Lagerungs-, Transport- bzw. Verkaufszwecken tiefgefroren werden. | ||
Um transgene Mäusezuchten gegen Verlust durch technische Störfälle (Klimasteuerung, Wassereinbruch) oder Pathogene (Infektionen durch Viren oder Bakterien) zu schützen, ist es erforderlich, das genetische Material zu sichern. Dabei werden Embryonen im Morula-Stadium aus hormonell stimulierten Mäusen aus transgenen Stämmen und Linien gewonnen und durch ein Einfrierverfahren ("Vitrifikation", Nowshari und Brem, 1993, Theriogenology) kryokonserviert. Auf der männlichen Seite können als Gameten die Spermatozoen kryokonserviert werden (Nakagata et al., 1997, Biol. Reprod.). Die Lagerung erfolgt in Flüssigstickstoff für unbegrenzte Zeit. Nach einem Auftauen erfolgt eine Ausverdünnung des Gefrierschutzmittels und die Embryonen können dann im Brutschrank bis zum Blastozysten-Stadium kultiviert oder direkt in scheinträchtige Empfänger übertragen werden. Die Gameten können nach dem Auftauen für In vitro-Befruchtungen (IVF) genutzt und die daraus entstehenden IVF-Embryonen in Empfänger übertragen werden. Die Anzahl der zu konservierenden Embryonen hängt vom Genotyp der Eltern (homozygot oder heterozygot) und von deren genetischem Hintergrund (Auszucht oder Inzucht) ab. Es werden 150 bis 300 Embryonen jeder einzelnen transgenen Linie und jedes genetischen Hintergrundes kryokonserviert. | Um transgene Mäusezuchten gegen Verlust durch technische Störfälle (Klimasteuerung, Wassereinbruch) oder Pathogene (Infektionen durch Viren oder Bakterien) zu schützen, ist es erforderlich, das genetische Material zu sichern. Dabei werden Embryonen im Morula-Stadium aus hormonell stimulierten Mäusen aus transgenen Stämmen und Linien gewonnen und durch ein Einfrierverfahren ("Vitrifikation", Nowshari und Brem, 1993, Theriogenology) kryokonserviert. Auf der männlichen Seite können als Gameten die Spermatozoen kryokonserviert werden (Nakagata et al., 1997, Biol. Reprod.). Die Lagerung erfolgt in Flüssigstickstoff für unbegrenzte Zeit. Nach einem Auftauen erfolgt eine Ausverdünnung des Gefrierschutzmittels und die Embryonen können dann im Brutschrank bis zum Blastozysten-Stadium kultiviert oder direkt in scheinträchtige Empfänger übertragen werden. Die Gameten können nach dem Auftauen für In vitro-Befruchtungen (IVF) genutzt und die daraus entstehenden IVF-Embryonen in Empfänger übertragen werden. Die Anzahl der zu konservierenden Embryonen hängt vom Genotyp der Eltern (homozygot oder heterozygot) und von deren genetischem Hintergrund (Auszucht oder Inzucht) ab. Es werden 150 bis 300 Embryonen jeder einzelnen transgenen Linie und jedes genetischen Hintergrundes kryokonserviert. | ||
Als weitere Techniken zur Konservierung genetischen Materials wird die Kryokonservierung von Keimgewebe (Ovar und Hoden) zur späteren Transplantation auf immunsupprimierte Empfänger und die Konservierung von genetisch veränderten Zelllinien zur Klonierung von Mäusen etabliert. | Als weitere Techniken zur Konservierung genetischen Materials wird die Kryokonservierung von Keimgewebe (Ovar und Hoden) zur späteren Transplantation auf immunsupprimierte Empfänger und die Konservierung von genetisch veränderten Zelllinien zur Klonierung von Mäusen etabliert. | ||
Die Produktionsform "Gene farming" ermöglicht die Herstellung großer Mengen von Transgenprodukten (z.B. "Nutriceuticals" oder "Pharmaceuticals"), die nicht in entsprechender Reinheit und Menge aus natürlichen Rohstoffen gewonnen oder in anderen Bioreaktoren erzeugt werden können. Die Milchdrüse landwirtschaftlicher Nutztiere eignet sich besonders gut für die Produktion rekombinanter Proteine, die einfach durch Melken der transgenen Tiere geerntet werden können. Milch ist ein Sekret, das während der Laktationsperiode kontinuierlich über mehrere Wochen produziert wird. Eine Melkmaschine für Kaninchen ermöglicht ein sanftes Melken der [[Zibbe]]. Das System imitiert den natürlichen Saugakt der Jungen. Während die Zibbe auf einem Textilnetz ruht, werden die Melkbecher mit dem pulsierenden Saugvakuum an die Zitzen angelegt. Nach 5 bis 10 Minuten ist die Milchdrüse leer und die Melkbecher werden entfernt. Obwohl Kaninchen nie auf Milchmenge selektiert wurden, kann man an einem Tag bis zu 1/4 Liter Milch von einer 5 kg schweren Zibbe erhalten. | Die Produktionsform "Gene farming" ermöglicht die Herstellung großer Mengen von Transgenprodukten (z. B. "Nutriceuticals" oder "Pharmaceuticals"), die nicht in entsprechender Reinheit und Menge aus natürlichen Rohstoffen gewonnen oder in anderen Bioreaktoren erzeugt werden können. Die Milchdrüse landwirtschaftlicher Nutztiere eignet sich besonders gut für die Produktion rekombinanter Proteine, die einfach durch Melken der transgenen Tiere geerntet werden können. Milch ist ein Sekret, das während der Laktationsperiode kontinuierlich über mehrere Wochen produziert wird. Eine Melkmaschine für Kaninchen ermöglicht ein sanftes Melken der [[Zibbe]]. Das System imitiert den natürlichen Saugakt der Jungen. Während die Zibbe auf einem Textilnetz ruht, werden die Melkbecher mit dem pulsierenden Saugvakuum an die Zitzen angelegt. Nach 5 bis 10 Minuten ist die Milchdrüse leer und die Melkbecher werden entfernt. Obwohl Kaninchen nie auf Milchmenge selektiert wurden, kann man an einem Tag bis zu 1/4 Liter Milch von einer 5 kg schweren Zibbe erhalten. | ||
Mittels homologer Rekombination wurden in embryonalen Stamm-(ES)Zellen Mäuse erstellt, die gezielt eine Defizienz (Knockout, KO) in einem Mitglied der Janus-(Jak)-Tyrosinkinasen aufweisen. Jak-Mäuse sind ein Instrument, um die Wirkungen verschiedener Zytokine und Wachstumsfaktoren in vivo untersuchen zu können. Es wurden Jak2- und Tyk2-Mäuse bearbeitet. Die Jak2-defizienten Mäuse wurden unter der Federführung von Prof. Pfeffer (TU München) erstellt und in Kollaboration analysiert. Die Tyk2-Mäuse entstanden unter der Federführung der an der Abteilung Biotechnologie in der Tierproduktion des IFA Tulln und am Institut für Tierzucht und Genetik der Veterinärmedizinischen Universität Wien beschäftigten Wissenschaftler. | Mittels homologer Rekombination wurden in embryonalen Stamm-(ES)Zellen Mäuse erstellt, die gezielt eine Defizienz (Knockout, KO) in einem Mitglied der Janus-(Jak)-Tyrosinkinasen aufweisen. Jak-Mäuse sind ein Instrument, um die Wirkungen verschiedener Zytokine und Wachstumsfaktoren in vivo untersuchen zu können. Es wurden Jak2- und Tyk2-Mäuse bearbeitet. Die Jak2-defizienten Mäuse wurden unter der Federführung von Prof. Pfeffer (TU München) erstellt und in Kollaboration analysiert. Die Tyk2-Mäuse entstanden unter der Federführung der an der Abteilung Biotechnologie in der Tierproduktion des IFA Tulln und am Institut für Tierzucht und Genetik der Veterinärmedizinischen Universität Wien beschäftigten Wissenschaftler. | ||
Die Jak-Proteine (Janus Kinasen) sind eine Familie von Rezeptor-assoziierten Protein-Tyrosin-Kinasen, die beim Säuger 4 Mitglieder aufweist - Jak1, Jak2, Jak3 und Tyk2. Jaks binden an intrazelluläre Domänen von Zytokin- und Wachstumsfaktor-Rezeptoren. Nach Rezeptor-Ligand-Bindung werden sie aktiviert und regulieren die intrazelluläre Weiterleitung der Signale. Dabei spielen die Stat-(signal transducer and activator of transcription)-Proteine als positive Regulatoren eine wichtige Rolle. Stats werden vornehmlich von Jaks an den Rezeptorkomplexen aktiviert, bilden Homo- oder Heterodimere, translozieren in den Zellkern und aktivieren als Transkriptionsfaktoren spezifische Gene. Als negative Regulatoren wurde die Familie der SOCS Proteine (suppressor of cytokine signalling, auch CIS, SSI, JAB) identifiziert, die direkt die katalytische Aktivität der Jaks inhibieren oder über andere Mechanismen die Stat-Aktivierung verhindern. Dieser intrazelluläre Signalübertragungsweg wurde auf Grund der hauptsächlich beteiligten Proteinfamilien Jak-Stat-Signalweg benannt. Die zellspezifische Wirkung der Zytokine wird durch die spezifische Zusammensetzung der Rezeptorkomplexe gesteuert. Neben den Jak/Stat/SOCS Proteinen sind bei der zytokin- und wachstumsfaktor-vermittelten Antwort weitere zell- und entwicklungsspezifische Signalmoleküle und -kaskaden beteiligt. | Die Jak-Proteine (Janus Kinasen) sind eine Familie von Rezeptor-assoziierten Protein-Tyrosin-Kinasen, die beim Säuger 4 Mitglieder aufweist - Jak1, Jak2, Jak3 und Tyk2. Jaks binden an intrazelluläre Domänen von Zytokin- und Wachstumsfaktor-Rezeptoren. Nach Rezeptor-Ligand-Bindung werden sie aktiviert und regulieren die intrazelluläre Weiterleitung der Signale. Dabei spielen die Stat-(signal transducer and activator of transcription)-Proteine als positive Regulatoren eine wichtige Rolle. Stats werden vornehmlich von Jaks an den Rezeptorkomplexen aktiviert, bilden Homo- oder Heterodimere, translozieren in den Zellkern und aktivieren als Transkriptionsfaktoren spezifische Gene. Als negative Regulatoren wurde die Familie der SOCS Proteine (suppressor of cytokine signalling, auch CIS, SSI, JAB) identifiziert, die direkt die katalytische Aktivität der Jaks inhibieren oder über andere Mechanismen die Stat-Aktivierung verhindern. Dieser intrazelluläre Signalübertragungsweg wurde auf Grund der hauptsächlich beteiligten Proteinfamilien Jak-Stat-Signalweg benannt. Die zellspezifische Wirkung der Zytokine wird durch die spezifische Zusammensetzung der Rezeptorkomplexe gesteuert. Neben den Jak/Stat/SOCS Proteinen sind bei der zytokin- und wachstumsfaktor-vermittelten Antwort weitere zell- und entwicklungsspezifische Signalmoleküle und -kaskaden beteiligt. | ||
Die Funktion der Jaks wurde intensiv in verschiedenen In-vitro-Systemen untersucht. Diese Daten konnten nun durch die In-vivo-Untersuchung von Jak-defizienten (Jak-KO) Mäusen vervollständigt werden. Die gezielte Inaktivierung von Jak2 führt zu embyronaler Letalität der homozygoten KO-Mäuse. Jak2-Embyronen sind anämisch und sterben am Tag 12,5 der Embryonalentwicklung. In Abwesenheit der über Jak2 vermittelten Signalwege ist die Bildung der roten Blutkörperchen in der fetalen Leber komplett gestört. Dies ist v.a. durch die Notwendigkeit von Jak2 in der Signalweiterleitung von Erythropoietin (EPO), Interleukin (IL) -3 und Granulozyt-Makrophagen-Colonie-Stimulierenden Faktor (GM-CSF) erklärbar. | Die Funktion der Jaks wurde intensiv in verschiedenen In-vitro-Systemen untersucht. Diese Daten konnten nun durch die In-vivo-Untersuchung von Jak-defizienten (Jak-KO) Mäusen vervollständigt werden. Die gezielte Inaktivierung von Jak2 führt zu embyronaler Letalität der homozygoten KO-Mäuse. Jak2-Embyronen sind anämisch und sterben am Tag 12,5 der Embryonalentwicklung. In Abwesenheit der über Jak2 vermittelten Signalwege ist die Bildung der roten Blutkörperchen in der fetalen Leber komplett gestört. Dies ist v. a. durch die Notwendigkeit von Jak2 in der Signalweiterleitung von Erythropoietin (EPO), Interleukin (IL) -3 und Granulozyt-Makrophagen-Colonie-Stimulierenden Faktor (GM-CSF) erklärbar. | ||
Die Untersuchungen an Tyk2-Mäusen haben gezeigt, dass Tyk2 nicht wie die übrigen Mitglieder der Jak-Familie maßgeblich an der Architektur eines oder mehrerer Zytokinrezeptoren in vivo beteiligt ist. Die Rolle von Tyk2 im Gesamtorganismus ist vielmehr die Feinabstimmung der Zytokin-Antwort durch eine Verstärkung des vorhandenen Signals bzw. die selektive Aktivierung von bestimmten Stats an den jeweiligen Zytokin-Rezeptoren. Zumindest am IFN-alpha/beta- und am IL-12-Rezeptor ist die Anwesenheit von Tyk2 für die Aktivierung von Stat3 erforderlich. Tyk2-Defizienz führt nicht wie aus den in vitro Daten erwartet wurde, zu einer generellen starken Beeinträchtigung des Immunsystems. Die Daten weisen vielmehr auf eine Rolle von Tyk2 beim Übergang von der innaten Immunität in die spezifische Immunität hin. | Die Untersuchungen an Tyk2-Mäusen haben gezeigt, dass Tyk2 nicht wie die übrigen Mitglieder der Jak-Familie maßgeblich an der Architektur eines oder mehrerer Zytokinrezeptoren in vivo beteiligt ist. Die Rolle von Tyk2 im Gesamtorganismus ist vielmehr die Feinabstimmung der Zytokin-Antwort durch eine Verstärkung des vorhandenen Signals bzw. die selektive Aktivierung von bestimmten Stats an den jeweiligen Zytokin-Rezeptoren. Zumindest am IFN-alpha/beta- und am IL-12-Rezeptor ist die Anwesenheit von Tyk2 für die Aktivierung von Stat3 erforderlich. Tyk2-Defizienz führt nicht wie aus den in vitro Daten erwartet wurde, zu einer generellen starken Beeinträchtigung des Immunsystems. Die Daten weisen vielmehr auf eine Rolle von Tyk2 beim Übergang von der innaten Immunität in die spezifische Immunität hin. | ||
Molekulargenetische Techniken ermöglichen es, krankheitsrelevante Veränderungen im Erbmaterial direkt aufzudecken. Dabei werden nicht nur die homozygoten Merkmalsträger sondern auch die phänotypisch gesunden, heterozygoten Anlageträger erkannt. Auch bei der Selektion auf Leistungsmerkmale erlaubt es die molekulargenetische Diagnostik, den Wert der Tiere in Hinblick auf ein Merkmal direkt zu bestimmen, als Träger und Vererber wünschenswerter Merkmalsmarker können sie bevorzugt in der Zucht eingesetzt werden. Beispiele molekulargenetischer Diagnostik: | Molekulargenetische Techniken ermöglichen es, krankheitsrelevante Veränderungen im Erbmaterial direkt aufzudecken. Dabei werden nicht nur die homozygoten Merkmalsträger sondern auch die phänotypisch gesunden, heterozygoten Anlageträger erkannt. Auch bei der Selektion auf Leistungsmerkmale erlaubt es die molekulargenetische Diagnostik, den Wert der Tiere in Hinblick auf ein Merkmal direkt zu bestimmen, als Träger und Vererber wünschenswerter Merkmalsmarker können sie bevorzugt in der Zucht eingesetzt werden. Beispiele molekulargenetischer Diagnostik: | ||
Die Kappa-Kasein-Allele sind Leistungsmarker. Das Milchprotein Kasein bildet den Grundstoff für die Käseherstellung. In den Rinderpopulationen sind verschiedene Kappa-Kasein-Allele vorhanden, wobei eine Variante des Proteins bessere Käsereieigenschaften aufweist, also für bessere Käsequalität und höheren Käseertrag steht. Zuchtstiere, die das verantwortliche Allel - es ist das Allel B - tragen, können mittels molekulargenetischer Diagnostik direkt erkannt und selektiv bevorzugt werden: Sie vererben das Leistungsmerkmal an ihre Töchter weiter. | Die Kappa-Kasein-Allele sind Leistungsmarker. Das Milchprotein Kasein bildet den Grundstoff für die Käseherstellung. In den Rinderpopulationen sind verschiedene Kappa-Kasein-Allele vorhanden, wobei eine Variante des Proteins bessere Käsereieigenschaften aufweist, also für bessere Käsequalität und höheren Käseertrag steht. Zuchtstiere, die das verantwortliche Allel - es ist das Allel B - tragen, können mittels molekulargenetischer Diagnostik direkt erkannt und selektiv bevorzugt werden: Sie vererben das Leistungsmerkmal an ihre Töchter weiter. | ||
Die bovine Leukozyten Adhäsions Defizienz ist eine autosomal rezessive Erbkrankheit bei Holstein Rindern. Eine Punktmutation ist für eine Dysfunktion der weißen Blutzellen verantwortlich, die so ihre Kontrollfunktion gegenüber Infektionserregern nicht mehr erfüllen können. Homozygote Träger des Defektes sterben wegen reduzierter Immunantwort innerhalb des ersten Lebensjahres. Bei Nachkommen von Zuchttieren, die als heterozygote Träger des Defektes evident sind, ist der BLAD-Test eine wichtige erbhygienische Maßnahme, um die Krankheit unter Kontrolle zu halten. | Die bovine Leukozyten Adhäsions Defizienz ist eine autosomal rezessive Erbkrankheit bei Holstein Rindern. Eine Punktmutation ist für eine Dysfunktion der weißen Blutzellen verantwortlich, die so ihre Kontrollfunktion gegenüber Infektionserregern nicht mehr erfüllen können. Homozygote Träger des Defektes sterben wegen reduzierter Immunantwort innerhalb des ersten Lebensjahres. Bei Nachkommen von Zuchttieren, die als heterozygote Träger des Defektes evident sind, ist der BLAD-Test eine wichtige erbhygienische Maßnahme, um die Krankheit unter Kontrolle zu halten. | ||
Die "Schnüffelkrankheit" (Rhinitis athrophicans) ist eine der wirtschaftlich bedeutsamsten Erkrankungen in der Schweineproduktion. Das Krankheitsbild wird durch das Zusammenspiel mehrerer Faktoren (schlechtes Stallklima, Viren, Mykoplasmen und andere Keime, z.B. Bordatella bronchiseptica) verursacht. Maßgeblich am Ausbruch der Krankheit sind jedoch toxinbildende Pasteurella multocida Stämme. | Die "Schnüffelkrankheit" (Rhinitis athrophicans) ist eine der wirtschaftlich bedeutsamsten Erkrankungen in der Schweineproduktion. Das Krankheitsbild wird durch das Zusammenspiel mehrerer Faktoren (schlechtes Stallklima, Viren, Mykoplasmen und andere Keime, z. B. Bordatella bronchiseptica) verursacht. Maßgeblich am Ausbruch der Krankheit sind jedoch toxinbildende Pasteurella multocida Stämme. | ||
Die Proben werden mit Hilfe spezieller Nasentupfer im Betrieb entnommen. Sie werden über Nacht in einem Spezialmedium inkubiert um vorhandene toxinbildende Pasteurella multocida Stämme zu vermehren. Über Polymerasekettenreaktion (PCR) wird einerseits das Toxingen nachgewiesen, andererseits die Methode an sich durch eine interne Kontrolle überprüft. Die Bande der internen Kontrolle (400 Basenpaare) muss in jeder Reaktion auf der Gelelektrophorese erscheinen, die Toxinbande (1600 Basenpaare) nur in positiven Untersuchungsproben. Der große Vorteil des Nachweises von Krankheitserregern mit Hilfe der PCR, im Gegensatz zu anderen Nachweismethoden (z.B.ELISA), liegt hauptsächlich in der höheren Sensitivität, da falsch positive und falsch negative Resultate vermieden werden. | Die Proben werden mit Hilfe spezieller Nasentupfer im Betrieb entnommen. Sie werden über Nacht in einem Spezialmedium inkubiert um vorhandene toxinbildende Pasteurella multocida Stämme zu vermehren. Über Polymerasekettenreaktion (PCR) wird einerseits das Toxingen nachgewiesen, andererseits die Methode an sich durch eine interne Kontrolle überprüft. Die Bande der internen Kontrolle (400 Basenpaare) muss in jeder Reaktion auf der Gelelektrophorese erscheinen, die Toxinbande (1600 Basenpaare) nur in positiven Untersuchungsproben. Der große Vorteil des Nachweises von Krankheitserregern mit Hilfe der PCR, im Gegensatz zu anderen Nachweismethoden (z. B.ELISA), liegt hauptsächlich in der höheren Sensitivität, da falsch positive und falsch negative Resultate vermieden werden. | ||
=== Institut für Tierernährung, Tierische Lebensmittel und Ernährungsphysiologie === | === Institut für Tierernährung, Tierische Lebensmittel und Ernährungsphysiologie === | ||
Das Institut für Tierernährung, Tierische Lebensmittel und Ernährungsphysiologie (TTE) repräsentiert den Beginn der Versorgungskette an Lebensmitteln tierischer Herkunft. Im Mittelpunkt steht hierbei die sachgemäße Fütterung landwirtschaftlicher Nutztiere und der maßgebliche Beitrag der Ernährung zur Qualität und Sicherheit der Primärprodukte (Milch, Fleisch, Eier). Die Sekundärwirkungen einzelner Nahrungskomponenten auf Verdauung, Stoffwechsel und Gesundheit bilden einen besonderen Schwerpunkt. | |||
Das Institut für Tierernährung, Tierische Lebensmittel und Ernährungsphysiologie (TTE) repräsentiert den Beginn der Versorgungskette an Lebensmitteln tierischer Herkunft. Im Mittelpunkt steht hierbei die sachgemäße Fütterung landwirtschaftlicher Nutztiere und der maßgebliche Beitrag der Ernährung zur Qualität und Sicherheit der Primärprodukte (Milch, Fleisch, Eier). Die Sekundärwirkungen einzelner Nahrungskomponenten auf Verdauung, Stoffwechsel und Gesundheit bilden einen besonderen Schwerpunkt. | |||
Experimentelle Studien an landwirtschaftlichen Nutztieren und Modelltieren für den Menschen (Schwein, Ratte) zum Stoffwechsel von Nährstoffen und der Wirkung von funktionellen Inhaltsstoffen der Nahrung bzw. von Zusatzstoffen. | Experimentelle Studien an landwirtschaftlichen Nutztieren und Modelltieren für den Menschen (Schwein, Ratte) zum Stoffwechsel von Nährstoffen und der Wirkung von funktionellen Inhaltsstoffen der Nahrung bzw. von Zusatzstoffen. | ||
Analyse von Nährstoffen (inkl. Spurenelementen) in biologischem Material. | Analyse von Nährstoffen (inkl. Spurenelementen) in biologischem Material. | ||
Quantifizierung fraktioneller Stoffflüsse im intakten Organismus (Absorption, Exkretion, Turnover im Gewebe). | Quantifizierung fraktioneller Stoffflüsse im intakten Organismus (Absorption, Exkretion, Turnover im Gewebe). | ||
Thematische Schwerpunkte | Thematische Schwerpunkte | ||
Zeile 157: | Zeile 154: | ||
== Weblinks == | == Weblinks == | ||
* [http://www.ifa-tulln.ac.at Website des Departments] | * [http://www.ifa-tulln.ac.at Website des Departments] | ||
* [http://www.youtube.com/mycotoxinchannel#p/a/u/0/DSO9R7H9Qfo Video zur Mykotoxinanalytik auf Youtube] | * [http://www.youtube.com/mycotoxinchannel#p/a/u/0/DSO9R7H9Qfo Video zur Mykotoxinanalytik auf Youtube] | ||
* [http://www.youtube.com/watch?v=VgiEOrHbsCQ Video zu Projekt "Enercycle" der Arbeitsgruppe Anaerobe Verwertung] | * [http://www.youtube.com/watch?v=VgiEOrHbsCQ Video zu Projekt "Enercycle" der Arbeitsgruppe Anaerobe Verwertung] |